WINTER- 18 EXAMINATION
Subject Name: Computer Graphics
Model Answer
Subject Code:
22318

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

$\begin{aligned} & \text { Q. } \\ & \text { No } \end{aligned}$	$\begin{aligned} & \text { Sub } \\ & \mathbf{Q .} \\ & \text { N. } \end{aligned}$	Answer	Marking Scheme
1		Attempt any FIVE of the following:	10 M
	a	Define: (i)Pixel (ii)Frame Buffer	2 M
	Ans	- Pixel Pixel or Pel is defined as "the smallest addressable screen element". OR A pixel may be defined as the smallest size object or color spot that can be displayed and addressed on a monitor. - Frame Buffer The frame buffer is the video memory (RAM) that is used to hold or map the image displayed on the screen. OR A framebuffer (frame buffer, or sometimes framestore) is a portion of RAM containing a bitmap that drives a video display.	1 M each for correct definition

OUR CENTERS :
KALYAN | DOMBIVLI | THANE | NERUL | DADAR

OUR CENTERS :
KALYAN | DOMBIVLI | THANE | NERUL | DADAR

		and hence the name DDA. Bresenham's Algorithm The Bresenham algorithm is another line drawing algorithm which uses integer calculations for drawing line.		
	e	List types of Polygon		2 M
	Ans	Polygon can be of two types:- - Convex polygon - Concave polygon		1 M each
	f	List various polygon filling algorithms		2 M
	Ans	Various polygon filling algorithms are: - Flood Fill Algorithm - Boundary Fill Algorithm - Scan Line Algorithm		1 M each, Any two
	g	Give matrix representation for 2D scal	-	2 M
	Ans	Let us assume that the original co-ordina the produced co-ordinates are ($\mathrm{X}^{\prime}, \mathrm{Y}^{\prime}$). Th below: $X^{\prime}=X$ The scaling factor S_{X}, S_{Y} scales the obj equations can also be represented in matrix	S are (X, Y), the scaling factors are $\left(\mathrm{S}_{\mathrm{X}}\right.$ can be mathematically represented as S_{X} and $Y^{\prime}=Y \cdot S_{Y}$ ect in X and Y direction respectively form as below: $\left[\begin{array}{c} \mathrm{X}^{\prime} \\ \mathrm{Y}^{\prime} \end{array}\right]=\left[\begin{array}{l} \mathrm{X} \\ \mathrm{Y} \end{array}\right]\left[\begin{array}{cc} \mathrm{S}_{\mathrm{x}} & 0 \\ 0 & \mathrm{~S}_{\mathrm{y}} \end{array}\right]$	2 M for proper Matrix
2		Attempt any THREE of the following:		12 M
	a	Differentiate between Random Scan an	Raster Scan.	4 M
	Ans	Random Scan Display In vector scan display the beam is moved between the end points of the graphics primitives. Vector display flickers when the number of primitives in the buffer becomes too large.	Raster Scan Display In raster scan display the beam is moved all over the screen one scan at a time, from top to bottom and then back to top. In raster display, the refresh process is independent of the complexity of the image.	Any four points: 1 mark each

	Steps 2: $\quad \Delta \mathrm{x}=\quad \operatorname{abs}\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)$ and $\Delta y=\quad \operatorname{abs}\left(y_{2}-y_{1}\right)$ Step 3: if $\Delta x \geq \Delta y$ then $\text { length }=\Delta x$ else $\text { length }=\Delta y$ end if Step 4: $\Delta \mathrm{x}=\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right) /$ length Step 5: $\Delta \mathrm{y}=\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right) /$ length Step 6: $x=\quad x_{1}+0.5 * \operatorname{sign}(\Delta x)$ $y=\quad y_{1}+0.5 * \operatorname{sign}(\Delta y)$ Step 7: $\mathrm{i}=1$ while ($\mathrm{i} \leq$ length) \{ plot (integer (x), integer (y)) $x=x+\Delta x$ $y=y+\Delta y$ $\mathrm{i}=\mathrm{i}+1$ \} Step 8: End	
c	List out basic transformation techniques. Explain scaling transformation with respect to 2D.	4 M
Ans	Basic transformations techniques are: - Translation - Scaling - Rotation Scaling Transformation - Scaling means to change the size of object. This change can either be positive or negative. - To change the size of an object, scaling transformation is used. In the scaling process, you either expand or compress the dimensions of the object. - \quad Scaling can be achieved by multiplying the original co-ordinates of the object with the scaling factor to get the desired result. - Let us assume that the original co-ordinates are (X, Y), the scaling factors are $\left(\mathrm{S}_{\mathrm{X}}, \mathrm{S}_{\mathrm{Y}}\right)$, and the produced co-ordinates are ($\left.\mathrm{X}^{\prime}, \mathrm{Y}^{\prime}\right)$. This can be mathematically represented as shown below: $X^{\prime}=X \cdot S_{X} \text { and } Y^{\prime}=Y \cdot S_{Y}$ - The scaling factor S_{X}, S_{Y} scales the object in X and Y direction	Listing 1M, Explanation 3M

	respectively. The above equations can also be represented in matrix form as below: $\begin{gathered} {\left[\begin{array}{c} \mathrm{X}^{\prime} \\ \mathrm{Y}^{\prime} \end{array}\right] \quad\left[\begin{array}{l} \mathrm{X} \\ \mathrm{Y} \end{array}\right]\left[\begin{array}{cc} \mathrm{S}_{\mathrm{x}} & 0 \\ 0 & \mathrm{~S}_{\mathrm{y}} \end{array}\right]} \\ \mathrm{OR} \\ \mathrm{P}^{\prime}=\mathrm{P} \cdot \mathrm{~S} \end{gathered}$ Where, S is the scaling matrix. - If we provide values less than 1 to the scaling factor S, then we can reduce the size of the object. If we provide values greater than 1 , then we can increase the size of the object.	
d	Explain differ types of Text clipping in brief.	4 M
Ans	Many techniques are used to provide text clipping in a computer graphics. It depends on the methods used to generate characters and the requirements of a particular application. There are three methods for text clipping which are listed below - 1) All or none string clipping 2) All or none character clipping 3) Text clipping The following figure shows all or none string clipping -	Explanation of 3 methods with diagrams 4 marks

(a) Before Clipping

In all or none string clipping method, either we keep the entire string or we reject entire string based on the clipping window. As shown in the above figure, Hello2 is entirely inside the clipping window so we keep it and Hello1 being only partially inside the window, we reject.
The following figure shows all or none character clipping -

This clipping method is based on characters rather than entire string. In this method if the string is entirely inside the clipping window, then we keep it. If it is partially outside the window, then -
You reject only the portion of the string being outside
If the character is on the boundary of the clipping window, then we discard that entire character and keep the rest string.
The following figure shows text clipping -

(a) Before Clipping

(b) After Clipping

This clipping method is based on characters rather than the entire string. In this method if the string is entirely inside the clipping window, then we keep it. If it is partially outside the window, then you reject only the portion of string being
(ISO/IEC - 27001-2013 Certified)

		outside. If the character is on the boundary of the clipping window, then we discard only that portion of character that is outside of the clipping window.	
3		Attempt any THREE of the following:	12 M
	a	Explain stroke method and Bitmap method with example.	4M
	Ans	1)STROKE METHOD - Stroke method is based on natural method of text written by human being. In this method graph is drawing in the form of line by line. - Line drawing algorithm DDA follows this method for line drawing. - This method uses small line segments to generate a character. The small series of line segments are drawn like a stroke of pen to form a character. - We can build our own stroke method character generator by calls to the line drawing algorithm. Here it is necessary to decide which line segments are needed for each character and then drawing these segments using line drawing algorithm. 2)BITMAP METHOD - Bitmap method is a called dot-matrix method as the name suggests this method use array of bits for generating a character. These dots are the points for array whose size is fixed. - In bitmatrix method when the dots is stored in the form of array the value 1 in array represent the characters i.e. where the dots appear we represent that position with numerical value 1 and the value where dots are not present is represented by 0 in array. - It is also called dot matrix because in this method characters are represented by an array of dots in the matrix form. It is a two dimensional array having columns and rows. - A 5×7 array is commonly used to represent characters. However 7×9 and 9×13 arrays are also used. Higher resolution devices such as inkjet printer or laser printer may use character arrays that are over 100×100.	Stroke Method 2 Marks; Bitmap Method 2 Marks
	b	Explain types of Parallel Projection with example.	4M
	Ans	- Orthographic projection - the projection direction is a normal one to the plane and it is categorized as - Top projection Front projection Side projection	Orthographi c projection 2 marks; Oblique projection 2 Marks

	Bit $4-\quad$ if $(x<W y 1)$ Step 4: Check for visibility of line P1, P2 If region codes for both end points are zero then the line is visible, draw it and jump to step 9. If region codes for end points are not zero and the logical and operation of them is also not zero then the line is invisible, reject it and jump to step 9. If region codes for end points does not satisfies the condition in 4(i) and 4(ii) then line is partly visible. Step 5: Determine the intersecting edge of the clipping window by inspecting the region codes for endpoints. If region codes for both the end points are non-zero, find intersection points P1 and P 2 with boundary edges of clipping window with respect to point P 1 and P 2 . If region code for any one end point is non zero then find intersection point P1 or P 2 with the boundary edge of the clipping window with respect to it. Step 6: Divide the line segments by considering intersection points. Step 7: Reject the line segment if any of the end point of it appear outside the window. Step 8: Draw the remaining line. Step 9: Exit	
d	Explain Koch curve with diagram.	4M
Ans	Koch Curve: - In Koch curve, begin at a line ségment. Divide it into third and replace the center by the two adjacent sides of an equilateral triangle as shown below. (a) (b) Fig 6.3 Replacement of Line Segment for Koch Curve This will give the curve which starts and ends at same place as the original segment but is built of 4 equal length segments, with each $1 / 3$ rd of the original length. So the new curve has $4 / 3$ the length of original segments. Repeat same process for each of the 4 segment which will give curve more wiggles and its length become $16 / 9$ times the original. Suppose repeating the replacements indefinitely, since each repetition increases the length by a factor of $4 / 3$, the length of the curve will be infinite but it is folded in lots of tiny	Description 3 Marks; Diagram 1 Mark

	Line 2: P3 $(70,20)-\mathrm{P} 4(100,10) \mathrm{Wxi}=50 \mathrm{Wy} 2=40 \mathrm{Wx} 2=80 \mathrm{Wy} 2=10$ Slope m $=\frac{10-20}{100-70}=\frac{-10}{30}=\frac{-1}{3}$ $y^{{ }_{1}}=m\left(x_{L}-x\right)+y=\frac{-1}{3}(50-70)+20=26.66$ $\mathrm{x}^{\prime}{ }_{1}=\frac{1}{m}\left(\mathrm{y}_{\mathrm{T}}-\mathrm{y}\right)+\mathrm{x}=-3(40-20)+70=10$ $\mathrm{y}_{2}^{\prime}=\mathrm{m}\left(\mathrm{x}_{\mathrm{R}}-\mathrm{x}\right)+\mathrm{y}=\frac{-1}{3}(80-70)+20=16.66$ $\mathrm{x}_{2}{ }_{2}=\frac{1}{m}\left(\mathrm{y}_{\mathrm{B}}-\mathrm{y}\right)+\mathrm{x}=-3(10-20)+70=100$ Hence:	
d	Consider the square $\mathrm{A}(\mathbf{1}, \mathbf{0}), \mathrm{B}(\mathbf{0}, \mathbf{0}), \mathrm{C}(\mathbf{O}, \mathbf{1}), \mathrm{D}(\mathbf{1}, \mathrm{I})$. Rotate the square ABCD by 45° anticlockwise about point $A(1.0)$.	4 M
Ans	$\left[\begin{array}{ccc} \cos \theta & \sin \theta \theta & 0 \\ -\sin \theta \theta & \cos \theta & 0 \\ -X p \cos \theta+Y p \sin \theta+X p & -X p \sin \theta-Y p \cos \theta+Y p & 1 \end{array}\right]$ Here, $\theta=45^{\circ}, X_{p}=1 Y_{p}=0$ $\left[T_{1} \cdot \mathrm{R}^{2} \cdot \mathrm{~T}_{2}\right]=\left[\begin{array}{ccc} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}}+1 & -\frac{1}{\sqrt{2}} & 1 \end{array}\right]$	Matrix formation 2 Marks; Matrix calculation 2 Marks

OUR CENTERS :
KALYAN | DOMBIVLI | THANE | NERUL | DADAR

5		Attempt any two of the following:	12 M
	a	Rotate a triangle defined by $\mathrm{A}(0,0), \mathrm{B}(6,0), \& \mathrm{C}(3,3)$ by 90° about origin in anti-clock wise direction	6 M
	Ans	The new position of point $A(0,0)$ will become $A^{\prime}(0,0)$ The new position of point $B(6,0)$ will become $B^{\prime}(0,6)$ The new position of point $C(3,3)$ will become $C^{\prime}(-3,3)$ $\begin{aligned} & {\left[\begin{array}{l} \mathrm{x}^{\prime} \\ \mathrm{y}^{\prime} \\ \omega^{\prime} \end{array}\right]=\left[\begin{array}{l} \mathrm{x} \\ \mathrm{y} \\ 1 \end{array}\right] \mathrm{x}\left[\begin{array}{ccc} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{array}\right]} \\ & {\left[\begin{array}{lll} 0 & 0 & 1 \\ 6 & 0 & 1 \\ 3 & 3 & 1 \end{array}\right] \times\left[\begin{array}{ccc} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right]} \\ & =\left[\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 6 & 1 \\ -3 & 3 & 1 \end{array}\right] \end{aligned}$	Matrix 2 Marks Correct answer 4 marks
	b	Explain boundary fill algorithm with pseudo code. Also mention its limitations if any.	6 M
	Ans	```Procedure : boundary_fill (x, y, f_colour, b_colour) { if (getpixel (x,y)! = b_colour && getpixel (x,y)! = f_colour) l putpixel (x,y,f_colour) boundary_fill (x + 1, y, f_colour, b_colour); boundary_fill (x,y + 1, f_colour, b_colour); boundary_fill (x - 1, y, f_colour, b_colour); boundary_fill (x, y - 1, f_colour, b_colour); 1 l Limitations:``` - There is a problem with this technique. Consider the case following, where we tried to fill the	$4 m$ algorithm, 2 m for limitations

 be consider.

Calculation

$$
P\left(\frac{1}{4}\right)=\left(1-\frac{1}{4}\right)^{3} P_{1}+3 \frac{1}{4}\left(1-\frac{1}{4}\right)^{2}+3\left(\frac{1}{4}\right)^{2}\left(1-\frac{1}{4}\right) P_{3}+\left(\frac{1}{4}\right)^{3} P_{4}
$$

$$
=\frac{27}{64}(0,10)+\frac{27}{64}(10,50)+\frac{9}{64}(70,40)+\frac{1}{64}(70,-20)
$$

$$
\begin{array}{r}
=\left[\frac{27}{64} \times 0+\frac{27}{64} \times 10+\frac{9}{64} \times 70+\frac{1}{64}\right. \\
\left.\frac{27}{64} \times 50+\frac{9}{64} \times 40+\frac{1}{64} \times-20\right]
\end{array}
$$

$$
=\left[0+\frac{270}{64}+\frac{630}{64}+\frac{70}{64}, \frac{270}{64}+\frac{135}{64}+\frac{360}{64}-\frac{20}{64}\right]
$$

$$
=\left[\frac{970}{64}, \frac{745}{64}\right]=(\sqrt[5,15,11.64)]{(1)}
$$

$$
\begin{aligned}
P\left(\frac{1}{2}\right)= & \left(1-\frac{1}{2}\right)^{3} P_{1}+3 \frac{1}{2}\left(1-\frac{1}{2}\right)^{2} P_{2}+3\left(\frac{1}{2}\right)^{2}\left(1-\frac{1}{2}\right) P_{3}+\left(\frac{1}{2}\right)^{3} P_{4} \\
= & \left(\frac{1}{8}\right)(0,10)+\frac{3}{8}(10,50)+\frac{3}{8}(70,40)+\frac{1}{8}(70,-20) \\
= & \left(\frac{1}{8} \times 0+\frac{3}{8} \times 10+\frac{3}{8} \times 70+\frac{1}{8} \times 70,\right. \\
& \left.\frac{1}{8} \times 10+\frac{3}{8} \times 50+\frac{3}{8} \times 40+\frac{1}{8} \times 40\right) \\
= & \left(\frac{30}{8}+\frac{210}{8}+\frac{70}{8}, \frac{10}{8}+\frac{150}{8}+\frac{120}{8}+\frac{-20}{8}\right) \\
= & \left(\frac{310}{8}, \frac{260}{8}\right)=(38.7,32.5)
\end{aligned}
$$

$P\left(\frac{3}{4}\right)$	$=\left(1-\frac{3}{4}\right)^{3} P_{1}+3 \frac{3}{4}\left(1-\frac{3}{4}\right)^{2} P_{2}+3\left(\frac{3}{4}\right)^{2}\left(1-\frac{3}{4}\right) P_{3}+\left(\frac{3}{4}\right)^{3} P_{4}$
	$=\frac{1}{64}(0,10)+\frac{9}{64}(10,50)+\frac{27}{64}(70,40)+\frac{27}{64}(70,-20)$
	$=\left(\frac{1}{64} \times 0+\frac{9}{64} \times 10+\frac{27}{64} \times 70+\frac{27}{64} \times 70\right.$,
	$=\left(\frac{90}{64} \times 10+\frac{9}{64} \times 50+\frac{27}{64} \times 40+\frac{27}{64} \times-20\right)$
	$=(60.4690$
$P(1)$	$\left.=\frac{150}{64} \times \frac{1090}{64}+\frac{1080}{64}-\frac{540}{64}\right)$

	$\begin{aligned} & =[(140) / 2,(20) / 2] \\ & =\quad(70,10) \end{aligned}$ ITERATION 2: $\text { Mid of } A B C=A B C^{\prime}$ $\begin{aligned} \mathrm{ABC}^{\prime} & =[(\mathrm{ABx}+\mathrm{BCx}) / 2,(\mathrm{ABy}+\mathrm{BCy}) / 2)] \\ & =[(5+40) / 2,(30+45) / 2] \\ & =[(45) / 2,(75) / 2] \\ & =(22.5,37.5) \end{aligned}$ Mid of BCD = BCD ${ }^{\prime}$ $\begin{aligned} \mathrm{BCD}^{\prime} & =[(\mathrm{BCx}+\mathrm{CDx}) / 2,(\mathrm{BCy}+\mathrm{CDy}) / 2)] \\ & =[(40+70) / 2,(45+10) / 2] \\ & =[(110) / 2,(55) / 2] \\ & =(55,27.5) \end{aligned}$ ITERATION 3: $\begin{aligned} \text { Mid of } \mathrm{ABCD} & =\mathrm{ABCD} \\ \mathrm{ABCD}^{\prime} & =[(\mathrm{ABCx}+\mathrm{BCDx}) / 2,(\mathrm{ABCy}+\mathrm{BCDy}) / 2)] \\ & =[(22.5+55) / 2,(37.5+27.5) / 2] \\ & =[(77.5) / 2,(65) / 2] \\ & =(38.25,32.5) \end{aligned}$

	It specifies three co-ordinates with their own scaling factors. If scale factors, $S_{x}=S_{y}=S_{z}=S>1$ then the scaling is called as magnification. $\mathrm{S}_{\mathrm{x}}=\mathrm{S}_{\mathrm{y}}=\mathrm{S}_{\mathrm{z}}=\mathrm{S}<1$ then the scaling is called as reduction. Therefore, point after scaling with respect to origin can be calculated as, $\therefore \quad \mathrm{P}=\mathrm{P} \cdot \mathrm{~S}$	
b	Write down Cyrus-Beck line clipping algorithm.	6M
Ans	Step 1: Read end points of line P_{1} and P_{2}. Step 2: Read vertex coordinates of clipping window. Step 3: Calculate $\mathrm{D}=\mathrm{P}_{2}-\mathrm{P}_{1}$. Step 4: Assign boundary point b with particular edge. Step 5: Find inner normal vector for corresponding edge. Step 6:Calculate D.n and W $=\mathrm{P}_{1}-\mathrm{b}$ Step 7:If D.n > 0 $\mathrm{t}_{\mathrm{L}}=-(\mathrm{W} . \mathrm{n}) /(\mathrm{D} . \mathrm{n})$ else $\mathrm{t}_{\mathrm{U}}=-(\mathrm{W} . \mathrm{n}) /(\mathrm{D} . \mathrm{n})$ end if Step 8: Repeat steps 4 through 7 for each edge of clipping window. Step 9: Find maximum lower limít and minimum upper limit. Step 10: If maximum lower limit and minimum upper limit do not satisfy condition $0 \leq t \leq 1$ then ignore line. Step 11: Calculate intersection points by substituting values of maximum lower limit and minimum upper limit in parametric equation of line $\mathrm{P}_{1} \mathrm{P}_{2}$. Step 12: Draw line segment $\mathrm{P}\left(\mathrm{t}_{\mathrm{L}}\right)$ to $\mathrm{P}\left(\mathrm{t}_{\mathrm{U}}\right)$. Step 13: Stop.	Correct algorithm 6 marks
c	Derive the expression for decision parameter used in Bresenhaum's circle drawing algorithm.	6M

Ans

